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Mean-field free-energy approach to the lattice Boltzmann method
for liquid-vapor and solid-fluid interfaces
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We present a lattice Boltzmann meth@dBM ) using a mean-field representation of the free energy for fluid
systems. This free-energy approach provides more realistic contact angles and fluid density profiles near the
vicinity of an impenetrable wall which cannot be easily obtained by other LBM schemes. Our method was
tested against various criteria and the results are in good agreement with those from thermodynamics and
molecular dynamics considerations. This mean-field approach to LBM can have an important implication on
studies where the solid-fluid interactions are crucial to fluidic behaviors.
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The lattice Boltzmann metho.BM) has experienced According to the mean-field approximation of van der
tremendous development in simulating fluid hydrodynamicWaals theory14,20,23, the total free energy for a fluid sys-
behaviors for the past decafie—4]. When compared with tem can be expressed as
traditional computational fluid dynamic methods, LBM has
the advantage that numerical algorithms can be easily imple- 1 , , ,
mented with complex solid or free boundaries even for muI-F:j drl Ylp(D]+ Ep(r)J’ dr' g (r'=n)lp(r’)—p(r)]
tiphase systemg§l,5]. It should be noted that most of the

existing LBM schemes can only simulate phase separation

and interface formation phenomenologically. These methods, +p(r)V(r)], @
however, typically produce significant spurious currents

within the interfacial region even at equilibriufs—10. where y/(p) is a local free energy with respect to the bulk

Swift et al. were among the first to employ a thermody- phase with density. The second term is a nonlocal term
namic free-energy approa_ch f_or Fhe LBM _scheme in m00_|e|1aking into account the free-energy cost of variations in the
ing |sotherma_l systems W|t_h liquid-vapor interfaces or with density. ¢(r' —r) is the interaction potential between two
two mutually interacting fluid$9,11]. Others have also em- 4 icjes located at’ andr. This term can be reduced to that

ployed this and similar free-energy models to simulate varios ihe square-gradient approximation when the local density

ous hydrodynamic systeni$,8,12. In Swift's model, free Haries slowly[14,15. The third term represents contribution
energy was expressed by a square-gradient expression of t

van der Waals theory using Cahn-Hilliard description of non_o?external potential energy(r) to the free-energy function

equilibrium dynamicg5,13. In reality, however, the pres- F. Both integrations in Eq(1l) are taken over the entire
ence of an impenetrable solid boundary imposes a discont?Pac€. _
nuity on the local fluid density near the wall. Thus, the With this expression of free energy, we followed the pro-

gradient expansion approximation used in deriving thecedures described in R¢23] and defined the nonlocal pres-
square-gradient theory is inadequate for description of solidSUre as
fluid interfaceq 14,15. As a result, meaningful fluid dynam-

ics simulations by LBM involving solid-fluid interfaces often P(r)=p(n)¢'[p(r)]=y¢lp(r)]
require adjustment of interaction parameters which might not 1
truly reflect the physics of specific solid-fluid systems. + Ep(r)f dr'ggu(r'=nlp(r’)=p(r)]. (2

Since solid-fluid interactions play a vital role in interfacial

phenomena for micro/nanofluidi¢$6,17, dynamic wetting  For a bulk fluid with uniform density, the nonlocal integral
[18], and thin liquid film stability[19], we propose a free- term disappears and E¢) reverts to the equation of state of
energy approach to the LBM by means of a mean-field reptne fluid. Here, we describe the implementation of these re-
resentation. This mean-field representation has very recentlyts into a LBM algorithm. Generally, after discretization in
been employed by us and others to study various wetting angme and space, the lattice Boltzmann equatioBE) with a

adhesion phenomeni4,20,21. We will illustrate below  Bhatnagar-Gross-Krook collision term can be written as
that our LBM simulations are in good agreement with those

obtained from thermodynamics and molecular dynamics 1 eq
(MD) fi(X+Q!t+1)_fi(xit):_;[fi(xat)_fi (X,t)], (3)
where the distribution functiofy(x,t) denotes particle popu-
* Author to whom correspondence should be addressed. lation moving in the direction o in a lattice sitex and at a
Tel: (780) 492-2791. Fax(780) 492-2200. time stept, 7 is the collision time, and 9(x,t) is a pre-
Electronic address: daniel.y.kwok@ualberta.ca scribed equilibrium distribution function with
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1
fo'=p do‘guz ,
1-do, D D(D+2)
9= +—¢g-u+——(g-u)?
TP T Tt 2
D , )
- Suel, i=1,...b (4) I
2bc 0.56 - 7
for a D-dimensional lattice wittb links, where the particle 054 [ |
speed igeg|=c. The constantl, is the equilibrium fraction . I
of particles at redt7]. The macroscopic densigyand veloc- =052 | -
ity u can be calculated from the distribution functirgiven -
by 0.50 |- -
0.48 | -
= f. , u= fe. 5 N 1 . 1 N 1 . 1 A 1 L 1 A
P Z P Z A ® 0 1 2 3 4 5 6 7
coexistence densities
However, if an external forc&(x,t) exists, we can modify 0.10 ——————————
Eq. (5) to reflect the momentum change as L © /.
0.08 | P 4
pu=2, fig+7F (6) -
i 0.06 | -
b 3
and useu produced here to calculate the equilibrium distri- 5o, L P i
bution functionf?9in Eq. (4) [7,8]. Redefining the fluid mo- I 7 ]
mentumpv to be an average of the momentum before colli- 002 | o 4
sion X;f;e, and that after collisiorf pu in Eq. (6)] and L e

following the Chapman-Enskog procedures, a Navier-Stokes 0.00 L L e e b
0 0.05 0.10 0.15 0.20

equation with the equation of state p
c?(1—dy) S - .
p= 0 +d (7) FIG. 1. (a) Density distributions across liquid-vapor interfaces,
D p (b) coexistence densities of liquid/vapor phases, érydliquid-

. ] . ] vapor interfacial tensions at different temperatures.
can be obtained, wher® is a potential energy field related

to F by lattice grid, the interaction potential;; can be reduced to a
Fxt)= —Vd(x.1). ® single numbekK [7],
. . . . K, [xX'=x|=c
In order to obtain the Navier-Stokes equation with a pressure des (X' —x)= , (12)
term similar to that given by Eq2), we set an artificiadb as 0, [x'—xl#c,
follows: which measures the interaction strength among the nearest
1 neighboring particles. Thus, the nonlocal integral term can be
DX, t)=pX) ' [p(X)]— ¢ p(X)]+ Ep(X)f dx’ ¢ (X’ replaced by a summation over its neighbors of asiti the
following simulations, we selected=9/49, b=2/21, kT
c?(1—dp) =0.55, 7=1.0, andK=—0.01, unless otherwise stated, a
—Xp(xX)=p(X)]= —F—p(X). (9 negativeK implies that the interaction is attractive. A D2Q7

lattice is employed, for whictb=2, b=6, dy=1/2, c=1,
The above equations setup a complete LBM scheme with the=[0,0], and e=[cosm(i—1)/3, sinm(i—-1)/3] (i

mean-field free-energy function implemented. To verify its=1, ...,6) in Eq.(4). . N
correctness and demonstrate its applicability, we adopt a van It should be noted that having the ability to generate a
der Waals fluid model reasonable liquid-vapor interface is crucial for any multi-

phase models. We tested our model using a simulation lattice
B p 2 configuration of a size 128128, with a nonuniform initial
w(p)—kalnl_ bp —aps, (10 density distribution, zero initial velocity, and periodic bound-
ary conditions. The data shown in Fig. 1 were obtained after
where a and b are the van der Waals constanksjs the 10000 time steps with a velocity in the interfacial region of
Boltzmann constant, anfl is the absolute temperature. In a the order of 10°. Figure 1a) shows the density profiles
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across a liquid-vapor interface at different temperatures. The L L L B
solid curves are not curve fits but the theoretical results by ) ]
minimizing the total free energy in Eql). In Fig. 1(b), we 4F @ -
also plotted the coexistence liquid and vapor densities with « | b
temperatures. Our LBM simulation data are represented by  3[ : 7
symbols and those by a Maxwell construction by solid [ ]
curves. It is apparent that our LBM simulation results for RN T S T TN SN
liquid-vapor interfaces are in good agreement with theoreti- 0 10 20 30 40 50 60
cal predictions based on free-energy expressions. As tem distance from the bubble center
perature decreases from the critical temperaiyethe in-
terfacial thickness decreases with a sharper interface. Thi:
can introduce significant errors into the LBM simulation be- 3
cause of a finite lattice length. Such an effect can be seen it 'z
Figs. X and Xb). Similar difficulties also occur in other
multiphase/multicomponent LBM model$,7,9. Knowing
the density distribution across a liquid-vapor interface, we - . . . . . . . .
can easily calculate the interfacial tensignby integrating 0 0.02 0.04 0.06 0.08 0.10
the excess free energy across the interfacial repeon21]. /R
The results are displayed in Fig(cl versus the reduced 13 — . r - r - T T T 1
temperaturg=(T.—T)/T.. Fitting the data with a function F ©
of the form y=at? gives 8=1.68 (solid curve, while the . 10 e ——————
mean-field theory predictg8=1.5 [24]. A fitting of y =
=at'® to our data is also shown as a dashed curve. It is™ o5} .
apparent in Fig. 1 that our LBM simulation results for liquid-
vapor interfaces agree well with those of thermodynamics. 4 P T T S W
Our next illustration is by means of the bubble test to 0.00 0.02 0.04 0.06 0.08 0.10
examine a multiphase/multicomponent modgls9,1d. In v
our simulations, we setup a rectangular high-density region FiG. 2. (a) Density distribution against the distance from the
in the center of a 128128 lattice domain with periodic pubble center(b) pressure differences across the bubble interface of
boundary conditions. After 10000 time steps, the systengifferent bubble sizes, an@) ratio of the two radii at perpendicular
reached equilibrium and formed a circular liquid bubble. Fig-directions when the reference system moveb at
ure 2a) shows the density distribution versus the distance
from the bubble center. It should be noted that nearly althe solid-fluid interfaces. The strength of our mean-field
points lie on a single curve. The variation from the singleLBM is in its ability to study solid-fluid interface. In the
curve is estimated to be about one lattice length, suggestin@gllowing demonstration, an exponentially decaying poten-
that this model has a very good isotropy. By measuring theial was used to model the solid wall effects upon the fluid,
bubble radiusR and the pressures inside/outside of the
bubble,P;, andP,;, the Laplace equation of capillarity V(r)=—-K,exp —h/c), (13)

F ® .

~
(=1
—_

S = N W R O
T T
\&
1

Pin—Pour=¥/R (120 whereK,, is the attraction strength ars the distance from
the wall at pointr. For a 128128 lattice domain, the bot-

can be verified. It is clear from Fig.(2) that the numerical tom layer sites are applied with a general bounce-back
results follow Eq.(12) very closely. A linear curve fitting boundary condition, while a mirror boundary condition is
yielded a slope of 6410 2 and is similar to that calculated applied at the top layer sites. The left and right ends are still
from Fig. 1 using density profile (7:810"%). The Galilean given by the periodic boundary conditions. By adjusting the
invariance is another important property for LBM models, wall attraction strengthK,,, we can generate different con-
since the system behavior should be invariant even when tHact angles, from complete wetting to complete dewetting,
reference coordinates are being translated at any given coas illustrated in Fig. 3. The contact angle is found to be
stant velocity. The data in Fig(® were obtained by setting almost a linear function oK,, and is in agreement with the
different initial horizontal velocityl for the reference coor- results from other independent stud{@%,26. We wish to
dinates and measuring the corresponding liquid bubble sizgoint out that, unlike other mode[25,27], a contact angle
radii in horizontalr,,, and vertical directiom,. Clearly, the value between 0° and 180° can be generated without using a
bubble behaves as a perfect circle and does not change withpulsive solid-fluid interaction. This is consistent with MD
the reference velocityJ. These results suggest that our simulations[28,29 and physical reality.

model is indeed better than the original one by Swifial. Figure 4 shows the density distributions of a bulk fluid
[11] and is comparable to the modified oie2] with respect  against a wall with different attraction strengths. We found
to the Galilean invariance. that there is always a dryélow-density layer between the

Given that the simulations for liquid-fluid interfacial bulk liquid and the wall. This result is consistent with ther-
properties have been verified, we focus our attention here omodynamic consideratio20] and MD simulation$28,29|.
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FIG. 3. The apparent contact anglésas a function of solid-

FIG. 4. The fluid density distributions near an impenetrable wall
fluid attraction strengthk,, .

for different interaction strengttK,,=0.00, 0.02, 0.04, 0.06, and
0.08 (from bottom to top. The solid line is the corresponding dis-
Nevertheless, the density profiles show no oscillatory behawibution from a standard LBM method.

ior near the wall as found from MD results. This is due to the

fact that short-ranged interactions have been neglected in oypig wall can be obtained. Our simulation results agree well

approximatior{14,20. In Fig. 4, the solid straight line is the \yith those predicted by thermodynamics and molecular dy-

density profile from a standard D2Q7 LBM simulation. namics, suggesting that our mean-field approach to LBE for
Clearly, without using the free-energy approach describegiqyid-vapor and solid-fluid interfaces might have important

here, a standard D2Q7 has failed to predict the density varigmplications on studies where solid-fluid interactions are cru-

tion near the wall. _ . _cial to fluidic behaviors.
In conclusion, we have applied a mean-field approxima-

tion of free energy to the lattice Boltzmann method. The This work was supported, in part, by the Alberta Ingenu-
contribution of this model more important than previousity Establishment Fund, Canada Research C{@RC) Pro-
work is that solid-fluid boundary effects are considered thergram, and Natural Sciences and Engineering Research Coun-
modynamically in a more realistic case. As a result, morecil of Canada(NSERQ. J.Z. acknowledges financial support
reasonable contact angles and fluid density profiles near faom the Alberta Ingenuity.
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