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Mean-field free-energy approach to the lattice Boltzmann method
for liquid-vapor and solid-fluid interfaces
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We present a lattice Boltzmann method~LBM ! using a mean-field representation of the free energy for fluid
systems. This free-energy approach provides more realistic contact angles and fluid density profiles near the
vicinity of an impenetrable wall which cannot be easily obtained by other LBM schemes. Our method was
tested against various criteria and the results are in good agreement with those from thermodynamics and
molecular dynamics considerations. This mean-field approach to LBM can have an important implication on
studies where the solid-fluid interactions are crucial to fluidic behaviors.
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The lattice Boltzmann method~LBM ! has experienced
tremendous development in simulating fluid hydrodynam
behaviors for the past decade@1–4#. When compared with
traditional computational fluid dynamic methods, LBM h
the advantage that numerical algorithms can be easily im
mented with complex solid or free boundaries even for m
tiphase systems@1,5#. It should be noted that most of th
existing LBM schemes can only simulate phase separa
and interface formation phenomenologically. These metho
however, typically produce significant spurious curre
within the interfacial region even at equilibrium@5–10#.

Swift et al. were among the first to employ a thermod
namic free-energy approach for the LBM scheme in mod
ing isothermal systems with liquid-vapor interfaces or w
two mutually interacting fluids@9,11#. Others have also em
ployed this and similar free-energy models to simulate v
ous hydrodynamic systems@5,8,12#. In Swift’s model, free
energy was expressed by a square-gradient expression o
van der Waals theory using Cahn-Hilliard description of no
equilibrium dynamics@5,13#. In reality, however, the pres
ence of an impenetrable solid boundary imposes a disco
nuity on the local fluid density near the wall. Thus, t
gradient expansion approximation used in deriving
square-gradient theory is inadequate for description of so
fluid interfaces@14,15#. As a result, meaningful fluid dynam
ics simulations by LBM involving solid-fluid interfaces ofte
require adjustment of interaction parameters which might
truly reflect the physics of specific solid-fluid systems.

Since solid-fluid interactions play a vital role in interfaci
phenomena for micro/nanofluidics@16,17#, dynamic wetting
@18#, and thin liquid film stability@19#, we propose a free
energy approach to the LBM by means of a mean-field r
resentation. This mean-field representation has very rece
been employed by us and others to study various wetting
adhesion phenomena@14,20,21#. We will illustrate below
that our LBM simulations are in good agreement with tho
obtained from thermodynamics and molecular dynam
~MD!.
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According to the mean-field approximation of van d
Waals theory@14,20,22#, the total free energy for a fluid sys
tem can be expressed as

F5E dr H c@r~r !#1
1

2
r~r !E dr 8f f f~r 82r !@r~r 8!2r~r !#

1r~r !V~r !J , ~1!

wherec(r) is a local free energy with respect to the bu
phase with densityr. The second term is a nonlocal ter
taking into account the free-energy cost of variations in
density.f f f(r 82r ) is the interaction potential between tw
particles located atr 8 andr . This term can be reduced to tha
of the square-gradient approximation when the local den
varies slowly@14,15#. The third term represents contributio
of external potential energyV(r ) to the free-energy function
F. Both integrations in Eq.~1! are taken over the entire
space.

With this expression of free energy, we followed the pr
cedures described in Ref.@23# and defined the nonlocal pres
sure as

P~r !5r~r !c8@r~r !#2c@r~r !#

1
1

2
r~r !E dr 8f f f~r 82r !@r~r 8!2r~r !#. ~2!

For a bulk fluid with uniform density, the nonlocal integr
term disappears and Eq.~2! reverts to the equation of state o
the fluid. Here, we describe the implementation of these
sults into a LBM algorithm. Generally, after discretization
time and space, the lattice Boltzmann equation~LBE! with a
Bhatnagar-Gross-Krook collision term can be written as

f i~x1ei ,t11!2 f i~x,t !52
1

t
@ f i~x,t !2 f i

eq~x,t !#, ~3!

where the distribution functionf i(x,t) denotes particle popu
lation moving in the direction ofei in a lattice sitex and at a
time stept, t is the collision time, andf i

eq(x,t) is a pre-
scribed equilibrium distribution function with
©2004 The American Physical Society02-1
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f 0
eq5rFd02

1

c2
u2G ,

f i
eq5rF12d0

b
1

D

c2b
ei•u1

D~D12!

2c4b
~ei•u!2

2
D

2bc2
u2G , i 51, . . . ,b ~4!

for a D-dimensional lattice withb links, where the particle
speed isuei u5c. The constantd0 is the equilibrium fraction
of particles at rest@7#. The macroscopic densityr and veloc-
ity u can be calculated from the distribution functionf i given
by

r5(
i

f i , ru5(
i

f iei . ~5!

However, if an external forceF(x,t) exists, we can modify
Eq. ~5! to reflect the momentum change as

ru5(
i

f iei1tF ~6!

and useu produced here to calculate the equilibrium dist
bution functionf i

eq in Eq. ~4! @7,8#. Redefining the fluid mo-
mentumrv to be an average of the momentum before co
sion ( i f iei , and that after collision@ru in Eq. ~6!# and
following the Chapman-Enskog procedures, a Navier-Sto
equation with the equation of state

P5
c2~12d0!

D
r1F ~7!

can be obtained, whereF is a potential energy field relate
to F by

F~x,t !52“F~x,t !. ~8!

In order to obtain the Navier-Stokes equation with a press
term similar to that given by Eq.~2!, we set an artificialF as
follows:

F~x,t !5r~x!c8@r~x!#2c@r~x!#1
1

2
r~x!E dx8f f f~x8

2x!@r~x8!2r~x!#2
c2~12d0!

D
r~x!. ~9!

The above equations setup a complete LBM scheme with
mean-field free-energy function implemented. To verify
correctness and demonstrate its applicability, we adopt a
der Waals fluid model

c~r!5rkT ln
r

12br
2ar2, ~10!

where a and b are the van der Waals constants,k is the
Boltzmann constant, andT is the absolute temperature. In
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lattice grid, the interaction potentialf f f can be reduced to a
single numberK @7#,

f f f~x82x!5H K, ux82xu5c

0, ux82xuÞc,
~11!

which measures the interaction strength among the nea
neighboring particles. Thus, the nonlocal integral term can
replaced by a summation over its neighbors of a sitex. In the
following simulations, we selecteda59/49, b52/21, kT
50.55, t51.0, andK520.01, unless otherwise stated,
negativeK implies that the interaction is attractive. A D2Q
lattice is employed, for whichD52, b56, d051/2, c51,
e05@0,0#, and ei5@cosp(i21)/3, sinp(i21)/3] (i
51, . . . ,6) in Eq.~4!.

It should be noted that having the ability to generate
reasonable liquid-vapor interface is crucial for any mu
phase models. We tested our model using a simulation la
configuration of a size 1283128, with a nonuniform initial
density distribution, zero initial velocity, and periodic boun
ary conditions. The data shown in Fig. 1 were obtained a
10 000 time steps with a velocity in the interfacial region
the order of 1025. Figure 1~a! shows the density profiles

FIG. 1. ~a! Density distributions across liquid-vapor interface
~b! coexistence densities of liquid/vapor phases, and~c! liquid-
vapor interfacial tensions at different temperatures.
2-2
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across a liquid-vapor interface at different temperatures.
solid curves are not curve fits but the theoretical results
minimizing the total free energy in Eq.~1!. In Fig. 1~b!, we
also plotted the coexistence liquid and vapor densities w
temperatures. Our LBM simulation data are represented
symbols and those by a Maxwell construction by so
curves. It is apparent that our LBM simulation results f
liquid-vapor interfaces are in good agreement with theor
cal predictions based on free-energy expressions. As t
perature decreases from the critical temperatureTc , the in-
terfacial thickness decreases with a sharper interface.
can introduce significant errors into the LBM simulation b
cause of a finite lattice length. Such an effect can be see
Figs. 1~a! and 1~b!. Similar difficulties also occur in othe
multiphase/multicomponent LBM models@6,7,9#. Knowing
the density distribution across a liquid-vapor interface,
can easily calculate the interfacial tensiong by integrating
the excess free energy across the interfacial region@20,21#.
The results are displayed in Fig. 1~c! versus the reduced
temperaturet5(Tc2T)/Tc . Fitting the data with a function
of the form g5atb gives b51.68 ~solid curve!, while the
mean-field theory predictsb51.5 @24#. A fitting of g
5at1.5 to our data is also shown as a dashed curve. I
apparent in Fig. 1 that our LBM simulation results for liqui
vapor interfaces agree well with those of thermodynamic

Our next illustration is by means of the bubble test
examine a multiphase/multicomponent models@7,9,10#. In
our simulations, we setup a rectangular high-density reg
in the center of a 1283128 lattice domain with periodic
boundary conditions. After 10 000 time steps, the syst
reached equilibrium and formed a circular liquid bubble. F
ure 2~a! shows the density distribution versus the distan
from the bubble center. It should be noted that nearly
points lie on a single curve. The variation from the sing
curve is estimated to be about one lattice length, sugges
that this model has a very good isotropy. By measuring
bubble radiusR and the pressures inside/outside of t
bubble,Pin andPout , the Laplace equation of capillarity

Pin2Pout5g/R ~12!

can be verified. It is clear from Fig. 2~b! that the numerical
results follow Eq.~12! very closely. A linear curve fitting
yielded a slope of 6.431023 and is similar to that calculate
from Fig. 1 using density profile (7.831023). The Galilean
invariance is another important property for LBM mode
since the system behavior should be invariant even when
reference coordinates are being translated at any given
stant velocity. The data in Fig. 2~c! were obtained by setting
different initial horizontal velocityU for the reference coor
dinates and measuring the corresponding liquid bubble s
radii in horizontalr h , and vertical directionr v . Clearly, the
bubble behaves as a perfect circle and does not change
the reference velocityU. These results suggest that o
model is indeed better than the original one by Swiftet al.
@11# and is comparable to the modified one@12# with respect
to the Galilean invariance.

Given that the simulations for liquid-fluid interfacia
properties have been verified, we focus our attention here
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the solid-fluid interfaces. The strength of our mean-fie
LBM is in its ability to study solid-fluid interface. In the
following demonstration, an exponentially decaying pote
tial was used to model the solid wall effects upon the flu

V~r !52Kwexp~2h/c!, ~13!

whereKw is the attraction strength andh is the distance from
the wall at pointr . For a 1283128 lattice domain, the bot
tom layer sites are applied with a general bounce-b
boundary condition, while a mirror boundary condition
applied at the top layer sites. The left and right ends are
given by the periodic boundary conditions. By adjusting t
wall attraction strengthKw , we can generate different con
tact anglesu, from complete wetting to complete dewettin
as illustrated in Fig. 3. The contact angle is found to
almost a linear function ofKw and is in agreement with the
results from other independent studies@25,26#. We wish to
point out that, unlike other models@25,27#, a contact angle
value between 0° and 180° can be generated without usi
repulsive solid-fluid interaction. This is consistent with M
simulations@28,29# and physical reality.

Figure 4 shows the density distributions of a bulk flu
against a wall with different attraction strengths. We fou
that there is always a dryer~low-density! layer between the
bulk liquid and the wall. This result is consistent with the
modynamic considerations@20# and MD simulations@28,29#.

FIG. 2. ~a! Density distribution against the distance from th
bubble center,~b! pressure differences across the bubble interface
different bubble sizes, and~c! ratio of the two radii at perpendicula
directions when the reference system moves atU.
2-3
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Nevertheless, the density profiles show no oscillatory beh
ior near the wall as found from MD results. This is due to t
fact that short-ranged interactions have been neglected in
approximation@14,20#. In Fig. 4, the solid straight line is the
density profile from a standard D2Q7 LBM simulatio
Clearly, without using the free-energy approach descri
here, a standard D2Q7 has failed to predict the density va
tion near the wall.

In conclusion, we have applied a mean-field approxim
tion of free energy to the lattice Boltzmann method. T
contribution of this model more important than previo
work is that solid-fluid boundary effects are considered th
modynamically in a more realistic case. As a result, m
reasonable contact angles and fluid density profiles ne

FIG. 3. The apparent contact anglesu as a function of solid-
fluid attraction strengthsKw .
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solid wall can be obtained. Our simulation results agree w
with those predicted by thermodynamics and molecular
namics, suggesting that our mean-field approach to LBE
liquid-vapor and solid-fluid interfaces might have importa
implications on studies where solid-fluid interactions are c
cial to fluidic behaviors.
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FIG. 4. The fluid density distributions near an impenetrable w
for different interaction strength,Kw50.00, 0.02, 0.04, 0.06, and
0.08 ~from bottom to top!. The solid line is the corresponding dis
tribution from a standard LBM method.
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